#AprendeBioinformáticaEnCasa

Multiple Sequence Alignments and Jalview

Rafael Torres-Perez rafael.torres@cnb.csic.es

BioinfoGP

Bioinformatics for Genomics and Proteomics

Similarity

	Bilabial		Labio- dental		Inter- dental		Dental		Alveolar		Palatal		Velar	
	SOR	SON	SOR	SON	SOR	SON	SOR	SON	SOR	SON	SOR	SON	SOR	SON
Oclusiva	p	b					t	d					k	g
Fricativa		ß	f	1	θ	ð			s	Ş		j	x	Y
Africada				1							q	j ti		
Nasal		m		m		ņ		'n		n		ը ո		ŋ
Lateral				1		1		1		1		<u>1</u> ג		
Vibrante simple										ſ				
Vibrante múltiple										r				

Alignments

- Refers to:

- . the Process (algorithm) and,
- . the Representation of its result
- Match, mismatch, gap [open, extension, penalties], scoring
- Conservation, consensus, occupancy
- Similarity, Identity
- Families, domains
- Function

Alignments

- Utility:

- Relations between sequences: functionality, philogeny, evolutionary history

- Variation: polimorphism, pathogenicity.

MSA is based on Pairwise alignment (PA)
but..."PAs whispers... M(S)As shouts out loud"
(Hubbard et al., 1996)

- Manual MSA is tedious

- Sequences must be of similar length (except if looking for domain sharing) and composition.

- There is no unique MSA result. Scoring algorithms provide methods to compare alignments.

Scoring matrices for DNA sequences

A hypothetical substitution matrix:

	А	С	G	Т
А	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10

DNA MSA for evolutionary history, Protein MSA for functional relationship

Simililarity (: / .) in aminocids based on physicochemical properties...

...but, in fact, the used substitution matrices are made by analyzing the observed frequencies of substitutions in families of similar proteins.

Which matrix to choose?

It depends on how distant are your sequences each other...

Global and Local Alignment

Global Alignment

- Attemps to match as much of the sequence (heat-to-tail) as possible
- Recommended for suspected similar sequences in composition and length
- Main algorithm: Needleman-Wunsch (https://www.ebi.ac.uk/Tools/psa/emboss_needle/)

Local Alignment

- Try to find the regions with highest density of matches (best matching subsequences)
- Suitable for aligning more divergent or distant related sequences (often different lengths)
- Main algorithm: Smith-Waterman (https://www.ebi.ac.uk/Tools/psa/emboss_water/)

Both of them, Needleman-Wunsch (NW) and Smith-Waterman (SW) use a technique named Dynamic Programming, that assures to get highest-ranked alignments

Global FTFTALILLAVAV F--TAL-LLA-AV

Local FTFTALILL-AVAV --FTAL-LLAAV-- **Pairwise alignment:** reaching an optimal solution:

ATGGCCCTGTGGATGCGCCT L=20 CTGGTGCTGAGGTTGCGCTT

Exhaustive (brute-force) search: $3^{L^2} = 3^{20^2} = 7 \cdot 10^{190}$ Dynamic programming (DP): $3 \cdot L^2 = 3 \cdot 20^2 = 1200$

MSA scales one dimension (3D scoring matrix) and even the DP is not enough to reach an optimal alignment in a reasonable time

MSA uses **heuristics** (sometimes combined with DP) to reach an <u>approximate-to-optimal</u> (good) solution.

- s1: ACCGTGAAGCCAATAC
- s2: ACGTGCAACCATTAC
- s3: AGCGTGCAGCCAATAC
- s4: AGGGTGCCGCAATAC
- s5: AGGGTGCCACAATAC

- s1: ACCGTGAAGCCAATAC
- s2: ACGTGCAACCATTAC
- s3: AGCGTGCAGCCAATAC
- s4: AGGGTGCCGCAATAC
- s5: AGGGTGCCACAATAC

- s1: ACCGTGAAGCCAATAC
- s2: ACGTGCAACCATTAC
- s3: AGCGTGCAGCCAATAC
- s4: AGGGTGCCGCAATAC
- s5: AGGGTGCCACAATAC

- s1: ACCGTGAAGCCAATAC
- s2: ACGTGCAACCATTAC
- s3: AGCGTGCAGCCAATAC
- s4: AGGGTGCCGCAATAC
- s5: AGGGTGCCACAATAC

- s1: ACCGTGAAGCCAATAC
- s2: ACGTGCAACCATTAC
- s3: AGCGTGCAGCCAATAC
- s4: AGGGTGCCGCAATAC
- s5: AGGGTGCCACAATAC

Guide tree is crucial...

a)Regular Progressive Alignment Strategy

More algorithms/methods have been developed: **Iterative**, **HMM**, **Consistency**, etc... to make improvements

MSA tools we use

https://www.ebi.ac.uk/Tools/msa/

Tool	Comment	Suitable for	Max # sequences	Max file size
Clustal Omega <u>https://en.wikipedi</u> <u>a.org/wiki/Clustal</u> <u>http://www.clustal.</u> <u>org/omega/</u>	Uses seeded trees (popular progressive alignment) and HMM profile- profile. Fast	Medium-large MSAs (proteins, DNA or RNA)	4000	4 Mb
MAFFT <u>https://mafft.cbrc.j</u> <u>p/alignment/softwa</u> <u>re/algorithms/algor</u> <u>ithms.html</u>	Fast Fourier Transforms. <i>Fast</i> .	Medium to large MSAs (protein, DNA)	500	1 Mb
MUSCLE	Log-Expectation method. Accurate and especially good with proteins	Medium MSAs	500	1 Mb
T-Coffee	Consistency-based MSA (combines several aligners). Perhaps a bit slow	Small MSAs	500	1 Mb

Which is faster?

Well, it is not an easy question. It depends on the tool, tool algorithm⁽¹⁾ and version, the parameters, how many/how long are the sequences...

(1) e.g. In MAFFT there are very different algorithms available: FFT-NS-i (Speed oriented) L-INS-i (Accuracy-oriented) E-INS-i (Accuracy-oriented) G-INS-i (Accuracy-oriented) NW-NS-PartTree-1 (Speed oriented) FFT-NS-1 (Speed oriented)

"One can see that for 100 sequences, default MAFFT is **faster** than default Clustal Omega and default MUSCLE. MUSCLE has a higher-speed option, which employs a smaller number of refinements than the default (two as opposed to 16). For 100 sequences this option is **faster** than Clustal Omega, but still not as fast as default MAFFT. However, as the number of sequences is increased to around 2000, Clustal Omega **overtakes** the high speed MUSCLE version, and for around 10,000–20,000 sequences, **overtakes** default MAFFT. "

https://onlinelibrary.wiley.com/doi/full/10.1002/pro.3290

EL PAÍS CCU CGG CGG GCA Las doce letras que cambiaron el mundo

MANUEL ANSEDE 🎔 🕴 ARTUR GALOCHA 🕴 MARIANO ZAFRA 🎔

Let's Find (Ctrl+F) in JalView this motif in the alignments of coronaviruses genomes (exercise 4) and (PRRA) in the S Proteins (exercise 5):

- Which genomes or S proteins carry the motif (DNA: CCTCGGCGGGCA, S proteins: PRRA)?

- Based on the MAFFT alignments: which look to have some "similar" motif (which ones show a gap in this zone)?

annon cosponicou de con la principal calpabie de calmos

capacidad de contagio y de su virulencia

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194065/ (Hoffmann et al, 2020)

Betacovs not infecting human (plus SARS_Cov_2)

Betacovs infecting Human